Existência e estabilidade exponencial de solução de algumas equações diferenciais via semigrupos lineares
Data
2023-06-29
Autores
Trannin, Luan Carlos Lins
Título da Revista
ISSN da Revista
Título de Volume
Editor
Resumo
O trabalho apresenta uma abordagem simplificada das equações diferenciais parciais lineares, como a equação do calor, equação da onda, sistema termoelástico e sistemas de vigas de Timoshenko com a Lei Térmica de Fourier. Esses problemas são analisados utilizando a teoria de semigrupos lineares e resultados de Análise Funcional. A ideia central e tratar os problemas de valor inicial e de fronteira como um problema de Cauchy Abstrato {Ut = AU, t > 0,U(0) = U0,Nesse contexto, considera-se um operador linear não limitado A, definido em um espaço de Banach (ou Hilbert) H. O objetivo e demonstrar a existência e unicidade da solução e a estabilidade exponencial para cada modelo estudado. Para alcançar esses resultados, são utilizados conceitos e técnicas da Análise Funcional e da teoria de semigrupos lineares. A Análise Funcional permite estudar os espaços de Banach (ou Hilbert) nos quais as equações são formuladas, enquanto a teoria de semigrupos lineares e aplicada para analisar a evolução temporal dos sistemas descritos pelas equações diferenciais parciais. O trabalho apresenta uma abordagem detalhada, mostrando as etapas necessárias para obter a existência e unicidade da solução, bem como a estabilidade exponencial para cada modelo. Essa abordagem e baseada em fundamentos teóricos sólidos e resultados estabelecidos na área. No geral, o trabalho tem como objetivo fornecer uma compreensão simplificada e acessível das equações diferenciais parciais lineares, demonstrando a existência, unicidade e estabilidade exponencial das soluções para cada modelo abordado.
Descrição
Palavras-chave
Equações Diferenciais Parciais, Existência, Unicidade, Estabilidade