A meta-learning approach for selecting image segmentation algorithm

Data

Autores

Aguiar, Gabriel Jonas

Título da Revista

ISSN da Revista

Título de Volume

Editor

Resumo

Resumo: Sistemas de Visão Computacional são muito utilizados e importantes em diversas aplicações Dentro desses sistemas, o processo de detectação de uma região de interesse em imagens é de suma importância Esse processo é conhecido como segmentação Novos algoritmos de segmentação tem sido propostos nos últimos anos, porém nenhum é ótimo para qualquer imagem Os métodos, usualmente, utilizados para seleção do melhor algoritmo são testar todos os algoritmos ou utilizar algum conhecimento passado sobre o problema Meta-learning tem sido utilizado pela comunidade de pesquisa em Machine earning para a recomendação do melhor algoritmo de Machine Learning para uma nova base de dados Neste trabalho é investigado a hipótese que Meta-Learning também pode ser utilizado para recomendação do algoritmo de segmentação mais adequado Os experimentos foram conduzidos com oito algoritmos de segmentação, com diferentes abordagens, baseadas em custo e complexidade computacional em uma base de benchmark composta de 3 imagens originais e 21 imagens criadas por augmentation Os resultados mostraram que através do Meta-Learning é possível recomendar o algoritmo de segmentação mais adequado com mais de 8% de acurácia para um grupo de algoritmos e com 69% para o outro grupo, superando os baselines considerando performance preditiva e de segmentação

Descrição

Palavras-chave

Computação, Segmentação de imagem, Algoritmos de computador, Aprendizado do computador, Computer science, Image segmentation, Computer algorithms, Machine learning

Citação