Convergência numérica das equações telegráficas predador-presa

Data

Autores

Luiz, Kariston Stevan

Título da Revista

ISSN da Revista

Título de Volume

Editor

Resumo

Resumo: Nesse trabalho, estuda-se a convergência numérica de um sistema de equações predador-presa do tipo telegráfico, com efeitos reativos, difusivos e de retardo Tal sistema de EDPs pode descrever sistemas biológicos em que tais efeitos não possam ser desprezados Inicialmente realizou-se a modelagem matemática do problema, e em seguida fez-se a discretização do sis- tema de EDPs em uma malha no nível de tempo k, por meio do método das diferenças finitas, obtendo um sistema de equações explícitas Em seguida, analisou-se a consistência dos mé- todos de discretização de um sistema de equações predador-presa clássico, de uma equação telegráfica e por fim de uma equação telegráfica predador-presa Posteriormente foram calculadas as condições de estabilidade de Von Neumann para estas equações Através do Teorema de Equivalência de Lax verificou-se que o refinamento da malha, bem como os parâmetros dos modelos, as constantes reativas, a constante de difusão e o termo de retardo, oriundo da equação de Maxwell-Cattaneo, determinam as condições de estabilidade/instabilidade do problema

Descrição

Palavras-chave

Matemática aplicada, Equações diferenciais parciais, Applied mathematics - Computer

Citação