Marcadores AFLP e redes neurais na obtenção de híbridos intermediários
Arquivos
Data
Autores
Inocente, Gabriela
Título da Revista
ISSN da Revista
Título de Volume
Editor
Resumo
Resumo: Nos programas de melhoramento genético de milho para reconhecer genótipos com alto rendimento de grãos são necessários métodos de seleção eficiente que identifiquem as frequências alélicas e complementariedades das linhagens, de modo a maximizar a viabilidade do vigor híbrido O uso de linhagens nas gerações iniciais de autofecundação (S2) tendem a reduzir o número de cruzamentos teste, minimizando tempo e custos além de, apresentar alta produtividade de grãos e menor sensibilidade às variações ambientais Buscando a otimização desse processo, o surgimento de marcadores moleculares e ferramentas computacionais garante a eficiência e resultados promissores Os marcadores moleculares dominantes são ferramentas econômicas e altamente informativos para identificar genótipos associados as características de interesse, já para o modelo de aprendizado de máquinas Multilayer Perceptron (MLP) é possível a classificação e reconhecimento de padrões heteróticos de genótipos produtivos, mesmo quando a distribuição de probabilidade são desconhecidas Além das tecnologias para identificações dos genótipos, o conhecimento meteorológico é fundamental para seleção do melhor híbrido intermediário Nesse contexto, objetiva-se identificar padrões heteróticos a partir de Linhagens Parcialmente Endogâmicas (S2) por meio de quatro combinações de primers AFLP e comparar com os seus respectivos cruzamentos (híbridos intermediários) em diferentes ambientes no Estado do Paraná Os resultados obtidos pelos marcadores e os dados meteorológicos de cada ambiente testado, foram inseridos em um modelo de rede neural MLP, a fim de desenvolver um modelo de classificação voltado à seleção e descarte de genótipos de milho, visando alto rendimento de grãos e maximização do ganho genético Os marcadores moleculares dominantes AFLP foram eficientes na identificação e clusterização dos padrões heteróticos mesmo em estágios de endogamia parcial (S2) e a arquitetura de rede neural construída também foi eficiente na classificação de genótipos produtivos, visto que, a utilização conjunta de dados de marcadores moleculares e meteorológicos promoveram o aumento da capacidade preditiva do modelo
Descrição
Palavras-chave
Milho, Milho híbrido, Marcadores moleculares, Redes neurais (Computação), Corn, Hybrid corn, Molecular markers, Neural networks (Computer science)