Brancher, Jacques DuílioGalhardi, Lucas Busatta2024-07-242024-07-242019-03-29https://repositorio.uel.br/handle/123456789/17078Avaliações são rotineiramente utilizadas em contextos de aprendizado a fim de estimar o conhecimento retido pelos estudantes. Apesar de sua importância, professores geralmente consideram a tarefa de avaliar respostas discursivas como muito trabalhosa. As condições de trabalho do professor e a sua própria subjetividade podem influenciar nas suas avaliações, pois humanos estão sujeitos ao cansaço, à outras influências e a nota de um aluno pode depender até mesmo da ordem de correção. Esses problemas se apresentam de forma ainda mais intensa em ferramentas como Ambientes Virtuais de Aprendizagem e Cursos Onlines Abertos e Massivos, que recentemente aumentaram sua popularidade e são usados por muito mais estudantes de uma vez que salas de aula físicas. Visando auxiliar nesses problemas, essa dissertação explora a área de pesquisa da avaliação automática de respostas discursivas usando uma abordagem de aprendizado de máquina, com três principais objetivos: (1) realizar uma revisão sistemática da literatura sobre o assunto a fim de se obter uma visão geral do estado da arte e de suas principais técnicas; (2) coletar dados reais de exercícios discursivos escritos na Língua Portuguesa por estudantes; e (3) implementar, avaliar e comparar diferentes abordagens para o sistema de avaliação automática das respostas. Para o primeiro objetivo, 44 artigos foram sistematicamente revisados, analisando vários de seus aspectos, desde os dados utilizados até a avaliação do modelo. Para o segundo, foram coletadas 7473 respostas de 659 estudantes, além de 9558 avaliações feitas por 14 avaliadores humanos (algumas respostas receberam mais de uma avaliação). Para o último objetivo, seis abordagens diferentes foram experimentadas e um modelo final foi criado com a combinação das abordagens. A efetividade mostrada pelo modelo foi satisfatória, com os valores de kappa indicando uma concordância de moderada a substancial entre o modelo e a avaliação humana. Os resultados mostraram que uma abordagem de aprendizado de máquina pode ser eficientemente utilizada na avaliação automática de respostas curtas, incluindo respostas na Língua Portuguesa.engAvaliação automáticaQuestões discursivasAprendizado de máquinaProcessamento de linguagem naturalAprendizado do computadorProcessamento da linguagem natural (Computação)Automatic grading of portuguese short answers using a machine learning approachAvaliação automática de questões discursivas em português usando uma abordagem de aprendizado de máquinaDissertaçãoCiências Exatas e da Terra - Ciência da ComputaçãoAutomatic gradingShort answersMachine learningNatural language processingMachine learningNatural language processing (Computer science)