Proença Junior, Mário Lemes [Orientador]Hernandes Junior, Paulo Roberto Galego2024-05-012024-05-012016.00https://repositorio.uel.br/handle/123456789/11339Resumo: Detectar anomalias em redes de computadores com precisão e rapidez é fundamental para que o diagnóstico e a solução dos problemas sejam encontrados rapidamente Este trabalho apresenta a ferramenta Genetic Algorithm for Digital Signature (GADS), que identifica padrões anômalos no comportamento de uma rede através do uso de uma assinatura digital de segmento de rede, chamada Digital Signature of Network Segment using Flow Analysis (DSNSF) Foram usados dados reais extraídos de duas universidades, adquiridos por meio das técnicas de fluxos IP, usando os padrões Netflow e sFlow São usados seis atributos desses dados: bits/s, pacotes/s, os endereços IP de origem e destino e as portas de origem e destino Para a organização dos dados e geração das assinaturas digitais, é usado o Algoritmo Genético, uma ferramenta para solucionar problemas de otimização Para a detecção de anomalias são usadas três técnicas que já foram abordadas em conjunto com DSNSFs, o Adaptive Dynamic Time Warping, o uso de limiares (thresholds) e a lógica paraconsistente As três técnicas são comparadas e testadas para a avaliação da eficácia destas com o GADS usando dados reais de dois cenários diferentes, a Universidade Estadual de Londrina e a Universidade Tecnológica Federal do Paraná, campus Toledo Nos testes são buscadas as melhores taxas de detecção de anomalias, para que o administrador não seja sobrecarregado com falsos alarmesRedes de computadoresMedidas de segurançaSistemas de transmissão de dadosTráfegoAlgoritmos genéticosTrafficGenetic algorithmsManagementComputer networks - Safety measuresComputer networksAnomalyData transmission systemsDetecção de anomalias com assinatura digital utilizando algoritmo genético e análise de fluxos IPDissertação