Barbosa, Cinthyan Renata Sachs Camerlengo de [Orientador]Artoni, Arthur Alexandre2024-05-012024-05-012020.00https://repositorio.uel.br/handle/123456789/8994Resumo: Mesmo com os constantes avanços da medicina, o diagnóstico de transtornos mentais é um desafio para profissionais da área Dentre esses está o Transtorno do Espectro Autista (TEA), que é uma patologia muito comum que afeta a parte comportamental, social e de comunicação do indivíduo Porém identificá-lo é complexo, uma vez que não existem exames de imagens ou de sangue capazes de apontar o TEA e seu diagnóstico é feito apenas por análise comportamental Diversas técnicas podem ser utilizadas, como o uso de escalas diagnósticas que contém questionários específicos formulados por especialistas, que servem como guia no processo de diagnóstico Neste trabalho o Aprendizado de Máquina (AM) foi empregado em três bases de dados contendo resultados dos testes AQ-1 para adultos, adolescentes e crianças; além de outras características que poderiam influenciar no diagnóstico do TEA Experimentos foram realizados nas bases de dados a fim de elencar quais atributos seriam realmente relevantes para o diagnóstico do TEA utilizando AM Para a seleção dos atributos, a Random Forest foi utilizada como ferramenta para fazer um ranqueamento de 23 atributos presentes na base Em duas das três bases de dados foi possível reduzir o número de atributos para apenas 5, mantendo uma Acurácia acima de 9 Na outra Base de Dados para manter o mesmo nível de Acurácia, o menor número de atributos utilizado foi 7 A Suport Vector Machine se destacou dos demais algoritmos usados neste trabalho, obtendo resultados superiores em todos os cenáriosComputaçãoAprendizado do computadorTranstornos do espectro autistaTranstornos do espectro autistaDiagnósticoComputer scienceMachine learningAutism spectrum disordersAutism spectrum disorders - DiagnosisAplicação de aprendizado de máquina no auxílio ao diagnóstico do transtorno do espectro autistaDissertação